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Flows of the double-wave type in two and three dimensions for polytropic
gases have been studied in [1-6]. In those papers, on the basis of pro-
perties of potential flows, equations were derived describing motions

of the double-wave type, and many applications of the theory of these
flows to concrete problems in gas dynamics were considered.

The flows considered in [1] may be used to solve problems on the
steady flows past some special surfaces with the unperturbed flow suyper-
sonic. In [5] and [6] the theory of plane double waves was applied to
construct flows behind asymmetric shock and detonation waves of constant
strength.

Below we shall consider a new application of the theory of plane
double waves, again under the assumption of potential flow. It will be
shown that in the class of double waves, it is possible to have a steady
plane isothermal or polytropic gas flow adjoin an unsteady plane double-
wave flow across a stationary characteristic. This property permits us,
under the assumption of the hyperbolicity of the system of equations
being considered (we consider supersonic flows), to formulate many
boundary value problems in the hodograph plane for the sound velocity
C(u;, uy) and the potential ®°(u1, uy) (u, and u, being the components
of the vector w).

The formulation of the problems is in some sense similar to the
basic boundary value problems for plane steady potential flows in curved
channels [9]. If in steady flow the sound speed is found from
Bernoulli’s equation, then in this case instead of Bernoulli's equation
we must consider a nonlinear second order equation for the sound speed
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C(“l' u,) in the hodograph plane, known from the theory of double waves
(see [3,4}); for this equation, we must solve either a Goursat problem
or a mixed problem.

Moreover, in this fundamental case, the velocity distribution along
the moving wall and along the line separating the steady and unsteady
flows maps into a time-independent curve K("l' uy) = 0 in the hodograph
plane,

The formulated boundary value problems permit in principle the solu-
tion of gas motions in curved channels, Whose walls are stationary up
to a certain point and from there on move according to a definite rule,
so0 that the flow in the region of the physical plane bounded by the
fixed characteristics through the last fixed point on the channel walls
is steady and the flow behind those characteristics is unsteady.

As an illustration, we use Masseau’s method of characteristiecs to
solve for an isothermal gas the problem of the joining of a steady
simple wave to an unsteady double wave across a statjonary character-
istic.

1. The system of equations describing double waves under the assump-
tion of straight-line generatrices is (see {4})

(1.1
Yoy — 00 (1 —0,9)05 +2008,+ (1 —0284] -+ Yy (v — 3)0,° +8,7+2=0
(1 — 0,2 ©g° +20,0,0,,° + (1 — 85 ©,;,° =0 (1.2)
2= luy + Y (1 — D00t +D°  (i=1,2) (1.3)
Here
80 , oo° %6 . 2w o
ei=§;;, ®i :“a—;;“, emzmauiauk 4 ikma—'"‘”“"“iauk (l, k-—-i,.?)

We assume isentropic flows; the equation of state is in the form

2
p=2a’(8)p (“T i

Here p is the pressure, S the entropy, y the adiabatic exponent, and
p the density. We assume straight-line generatrices; this means that
the velocity vector u is constant along straight lines in the Xy, Xy, t
space, given by relation (1.3). After solving the system (1.1) and (1.2)
for the functions © and 9°, defined in the hodograph plane, we find the
flow in the physical plane from relation (1.3). We note that the types
of equation (1.1) for € and of equation (1.2) for ¢° are the same, and
are determined by the sign of the expression
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K=—02+402—1 (1.4)

In what follows, we shall assume that K > 0, i.e. that equations
(1.1) and (1.2) are hyperbolic and the characteristics are real for
both equations. Let us consider the following problem.=*

Is it possible to join an unsteady double-wave flow to a steady plane
potential flow? In plane steady potential flow, we have the Bernoulli
integral. We write this as

Ve (y — 1)82 + 1/, (1, + u,?) = A% = const (1.5)

L.et uys assume that the unsteady double-wave flow is bounded from a
two-dimensional steady flow by some line ¢(uy, uy) = 0 in the hodograph
plane., Then along this line, the function © defined by equation (1.1)
must satisfy the following condition, derived from (1.5) and (1.3)

Yo (1 —1)80; 4+ ;=0 (i=1,2) (1.6)
(the derivatives Gi are continuous across the line in question).

From (1.3) and (1.6), it follows that the boundary between the flows
considered may only be a stationary curve, defined by

Xy == (Dic (f B 1, 2), @ (ul, u,) =0 (17)

If the curve @(ul, u) =0 degenerates into the point u; ¥ ¢, = const,
uy = cy = const with cf + c22 > 0, then there is no common line between
the flows in the physical plane. An exception is the case ¢y Feq <0,
for which it was shown {6] that to a region of rest may be adjoined an
unsteady double wave across a stationary weak discontinuity. This case

will not be considered in the present work.

Relation (1.6) may be interpreted as a set of initial Cauchy data
for equation (1.1) along the line ¢(uy, uy) = 0, Since equation (1.1)
is satisfied by the function O, determined from Bernoulli’s integral
(1.5), it is necessary to consider the line P{uy, ug) = 0 as a

* We note in passing that M. Burnat has constructed in [7] examples of
some constant plane flows adjoined to unsteady flows, but only in
the class of simple waves. We shall consider the possibility of con-
structing unsteady flows of a much wider class, as we shall see be-
low.
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characteristic of the equations (1.1) and (1.2) in order to obtain an
unsteady flow. We write the equations of the characteristic strips (see
[8, chap.3]y for (1.1) and (1.2) in the form

(1 — 0% du,? — 20,0 dugdu, 4 (1 —8,2) duy? = 0 (1.8)

Yy (x — )0 (1 — 0,2 dByduy + [z (1 — 3) 0% + 0,0 + 2] duyduy +
4 Yy (y — 18 (1 —6,?) duyddy = 0

(1 — 8,9 dupd®° + (1 — 0 2) dud®y® = 0
de = (-)ldul “f{" B2d8«2, d‘pa = (Dlodul + @fduz

The characteristics in the hodograph plane, defined by the first
equation in (1.8) with € substituted from the Berpoulli integral (1.5),
coincide with the corresponding characteristics of steady flow and con-
sequently will be epicycloids (see [9]).

Since the coefficients for the highest derivatives for ®° and O along
the characteristics in question coincide with the corresponding coeffi-
cjents of the eguation for the potential in steady flow, and since
Bernoulli’s integral (1.5) satisfies equation (1.1), the condition for
the characteristic strips (1.8) is exactly satisfied along the station-
ary characteristics considered. Thus, the assertion that unsteady double
waves may adjoin steady potential plane flows is proved.

An entirely similar situation cobtains for an isothermal gas, in which
case instead of equations (1.1) to (1.3) we have

(1 — 1% (9as + 1) + 2¢102q12 + (1 — ) gu+1) =0 (1.9)
(1 — % @ + 2¢,0:P1° + (1 — ¢5%) Pyy° = 0 (1.10)
xi = (u‘ '+‘ q‘) t + (Dio (l = 1, 2) (1.11)

where
q o
g = Inp, ?i:é“{;;y ‘?ik:auiauk
The characteristics for steady flow in the hodograph plane are
evolutes of the circle; thus in this case the characteristic strips for
equation (1.10) may be written in parametric form as:

uy = cos p + (p — po) sin p, gy = — €08 p~ (p~ po) sin p
uy = sin p — (p — Po) €08 Py g, = — sin p + (p — po) c0s p
=c— Yy (p~— po)? {¢ = const, p — parameter)

2. Let us consider some properties of the moving walls, which are
consistent with the class of flows being studied. By a moving wall in
this connection we mean some curve in the x,, x, plane moving with time
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and given by y(x;, x4, t) = 0, across which there is no flow. Along the
wall curve, the following kinematic boundary condition must hold: the
normal component of the fluid velocity to the wall must equal the normal
wall velocity.

Let n be the normal to the wall curve at the point Xy, %, at the in-
stant ¢, and let D be the normal velocity of the wall at the same point.
The kinematic boundary condition is then

nu=D (2.1)

From (2.1) we obtain an equation for the function y

O/ dzyuy + O [ Ozqus+ M/ 3t =0 2.2)

Substituting into (2.2) the functions u., found from relation (1.3)
(after solving equations (1.1) and (1.2)), and solving for (2.2) the
Cauchy problem y = w(xl, 12) at ¢t = ty, We may find for a given flow
different moving walls of shapes known at the instant t = ty-

We note one further property. We shall consider the case when the
motion of the wall corresponds to a fixed curve in the hodograph plane.

Theorem. In the class of unsteady plane flows of the double-wave
type, there exists no stationary curved wall with a time-independent
velocity distribution K("l' uy) = 0.

In fact, assume that such a wall is found and the curve K(“l' u2)==0
corresponds to some cylindrical surface in the x,, x4, t Space. Then
from the presence of the straight-line generators belonging to this sur-
face, along which u; and u, are constant, it follows that the normals
to the wall surface are constant, and consequently the wall is straight.

Let us find D and n, if the motion of the curve in the %y, %5 blane
is defined by (1.3) and the shape of this curve in the hodograph plane
is known and given by the equation

ug = f (uy) 2.3)
Setting
Ai = ui+ Yy (v — 1)00, (i=1,2) (2.4)
we have from (1.3)
dz; = Ajtdu, + Adt 4 O du, (i=1,2) (2.5)

where the prime indicates differentiation along the curve (2.3). For a
vector perpendicular to the curve in question at the instant t at the
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point uy, u,, We have

dey At + @7
dxy A4 O (2.6)
Solving the system of equations (2.5) and (2.6), we find
dry _ (At @,%) [Ay (85t + @) — Ay (A1 + @)
dt (At -+ OO+ (At + @)
2.7y

dry _ — (At + %) [A; (At + B) — A, (At + D))
di (At D,°0% 4+ (Ay" + B2

Taking into account the fact that
[ 7dxyN\? dxg \2 2
D=|{% __2) 2.8
t(dt>.%<dt @8
we may write condition (2.1) in the form
A1 (Ag’t + (DZOI) —_— Az (Allt + (Dlo') == Uy (Ag’t + d)g") - Ug (Al’t -+ (Dlo,) (2.9)

and consequently, since t is arbitrary, the following relations nmust
hold along the moving wall curve:

0,4, — 0,4, =0, 0,D,% — 0,0, = 0 (2.10)

The first condition in (2.10) defines some relation F(u;, u,, 01,
62, §) = ¢ = const along the curve (2.3) for equation (1.1), in which
the constant ¢ must be found from the matching condition at the point
where the stationary wall adjoins the moving wall. In exactly the same
way, after the function e(ul, uy) is found, condition (2.10) defines
along (2.3) some relation W(ul.uz, Qlo. wzo) = const for equation (1.2).
We note that in steady flow, the first equation in (2.10) is auto-
matically satisfied (since Ai = @), while the second equation in (2.10)
expressed the fact that the normal fluid velocity at a stationary wall
must vanish.

In the formulation of the problem considered, the velocity distribu-
tion is given along the moving wall curve, while the motion and shape
of the wall is determined afterwards from equation (1.3). In principle,
the other approach to the problem is also possible, in which the shape
of the moving wall is given at some instant t. This leads to a condition
of the type (2.10) in the physical plane; however, the curve in the
hodograph plane corresponding to the moving wall (exactly as in the case
of steady flow) is unknown and this complicates the solution of the prob-
lem, since equation (1.1) for O is given in the hodograph plane.

The steady flow solution exactly satisfies the first condition (2.10);
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consequently, an immediate joining (across a stationary characteristic)
of a steady flow to an unsteady flow with moving walls of the type con-
sidered is not possible. For otherwise, from the solution of the mixed
problem for equations (1.1) and (1.2) with initial data on the charac-
teristic and on the noncharacteristic curve (2.3), we will only find a
steady flow.

Thus, the general form of the flow in the hodograph plane may be re-
presented as shown in Fig. 1.

The lines AR and BR correspond to stationary characteristics and
bound the region ARB, in which the flow is steady. The regions AECR and
BRDF correspond to unsteady flows, but in these regions there are no
moving walls of the kind discussed., We may find the flows in these
regions, given, for example, some relations on the functions 01, 92 and
®,°, ©,° on the noncharacteristic curves AC and BD.

After solving the mixed problem in the regions ACR and BRD, we solve
the Cauchy problem in the regions AEC and BDF,
bounded by the characteristics AE, EC and BF, FD u&
respectively, with initial data given on the
lines AC and BD. In the region RCOD we solve the
problem with data on the two characteristics RC
and AD.

Finally, in the regions APE and BQF (lines AP
and BQ corresponding to moving walls) we solve
mixed problems with data given on the character-~
istics AE and BF and condition (2.10) given on
the wall curves AP and BO. Y,

Each of the separate problems described may
be solved for equations (1.1) and (1.2) numeri-
cally using the method of characteristics of Masseau; in addition, the
derivatives in (2.10) are replaced by finite difference quotients and
the problem is readily solved in the usual manner.

The approach discussed for solving the problem of joining a steady
flow to an unsteady flow in a channel with moving walls is, evidently,
not a unique one, In the given approach there are the following possi-
bilities: we may arbitrarily give the shape of the lines AC and BD in
the physical plane and in the hodograph plane, a combination of the
functions 8, 9,, 82 along them, and alsoc the velocity distribution along
the moving wall. This arbitrariness permits, in particular, the con-
struction of unsteady flows with given properties (e.g. maximum accele-
ration of the steady flow at the beginning in regions ACR and BRD and
then determination of the corresponding moving wall). In principle, we
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may give some additional conditions on the wall curves AP and BQ, solve
the Cauchy problem in the regions APE and BFQ, and find the character-
istics AE and BF, and then solve the problem with data on two character-
istics in the regions AECR and BRDF.

3. As an illustration of the given method, we carry out a calcula-
tion for an isothermal gas; for simplicity, we do not consider an un-~
steady double wave adjoining an arbitrary steady flow, but only one ad-
joining a steady simple wave, the boundary between them being & charac-
teristic of one family only. Assume a steady uniform supersonic flow to
occupy the inlet of a straight-walled channel, and then let one of the
walls become curved, so that the uniform flow becomes a simple wave of
the following form (Fig. 2):

Uy = €08 s - (s + 1 — ¥/ ) sin s, Uy = sin § ~ (s + 1 — ¥/;n) cos 5
§ == 2y -+ zytan s - Y, m, g = ¢ — You? — You? (¢ = const) 3.9

The curved part of the stationary wall OA, starting from the origin
(0, 0), is given parametrically thus

Xy = § — Xy tans — Y, %y == c08* s+ cos s {3.2)
§ —
$ % : N T _¥V2 n_om
ex“[_2“+(i“2”)s] (2 IIS . exP{ +-(t—%) s]ds Texp[sz 4})

Up to the characteristic OB
xry + Ty = 0 (3'3)

One channel wall is straight, and the flow is uniform with u, =0 and
uy = JZ. The simple wave occurs in the region OAB. The shape of the
steady characteristic AB is found after integrating the linear equation

dog _ (cos® s — zy) [ug + ug (s 4+ 1 — ¥/, m)] 3.4)
ds 2coss (s -1 —1/,m)

with initial condition at the point 4, s € [1.26; 1/4 wl. In the
region BAC the method of
characteristics of Masseau is
used to solve equations (1.10)
and (1.11) for the unsteady
double wave, in which along
the noncharacteristic curve
BC (x2 = - 0,1593) are given
the conditions

gy = const = — Vé—
‘Dne = ¢onst = — 0.1593, u,x()

(3.5)
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The solution and the characteristics in the hodograph plane are
shown in Pig. 3.

The characteristic A'B’ corresponds to the simple wave region OAB in
the physical plane, and the

u, o i curve 4'D" to the m?v%n% wall
a5k A AD. In the region C A D the
B solution is completely undeter-
mined, and the position of the
3 moving wall is considered only
i in the neighborhood of the
3' o point A. The shape of the
. L . e moving wall is shown in Fig.2.
T Z0 25 1, ¢ 8

The normal velocity of the
Fig. 3. moving wall at the point o is
D = 0.103, the point o corre-
sponding the the point o' in the hodograph plane.

The region BAC in the physical plane corresponds to the region
B'A’C’ in the hodograph plane at the instant ¢t = 0, and the region BAC”
to B'A'C’ at t = 0.5. In the given case of an isothermal gas, the
Jacobian of the coordinate transformation from the hodograph plane to
the physical plane is

_ Vol 0u; Bxy]0uy | _ o
J o= axs / 6&‘«1 613: / aLLg == {(1 -+ Qn) (i - ?22) T2 } 24 (3.6)

+ 11+ ) Op’® 4 (1 + ggg) Oyy° — 2¢1aD12°] ¢ + DDy — Dy,

At ¢t = 0, it is immediately verified that
©;° 0y — Oy, £ 0 3.7

i.e. mapping to the physical plane is possible, and no limiting line
will appear for some time interval ty > ¢t > 0. We remark here that the
formulation of the problem does not permit (among double waves) the
complete solution for unsteady flows joined to steady flows in moving-
wall channels arising from a wall starting to move from some point on
at some instant. This difficulty is connected with the appearance of
limiting lines, if we consider the time t < 0. We shall not carry out
here the investigation for the time of existence of the flows discussed.

In conclusion, the author thanks N.N. Ianenko for his attention and
advice.
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