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Flows of the double-wave type in two and three dimensions for polytropic 

gases have been studied in [l-d. In those papers, on the basis of pro- 

perties of potential flows, equations were derived describing motions 

of the double-wave type, and many applications of the theory of these 

flows to concrete problems in gas dynamics were considered. 

The flows considered in 111 may be used to solve problems on the 

steady flows past some special surfaces with the unperturbed flow super- 

sonic. In L.51 and [sI the theory of plane double waves was applied to 

construct flows behind asymmetric shock and detonation waves of constant 

strength. 

Relow we shall consider a new application of the theory of plane 

double waves, again under the assumption of potential flow. It will be 

shown that in the class of double waves. it is possible to have a steady 

plane isothermal or polytropic gas flow adjoin an unsteady plane double- 

wave flow across a stationary characteristic. This property permits us. 

under the assumption of the hyperbolicity of the system of equations 

being considered (we consider supersonic flows), to formulate many 

boundary value problems in the hodograph plane for the sound velocity 

C(u,* ug) and the potential @‘(u,, ug) (ul and u2 being the components 

of the vector n). 

The formulation of the problems is in some sense similar to the 

basic boundary value problems for plane steady potential flows in curved 

channels [91. If in steady flow the sound speed is found from 
Bernoulli’s equation, then in this case instead of Rernoulli’s equation 

we must consider a nonlinear second order equation for the sound speed 
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C(u,, u2) in the hodograph plane, known froa the theory of double waveS 
(see E3.41); for this equation, we must solve either a Goursat problem 
or a mixed problem, 

Moreover, in this fundamental case, the velocity distribution along 
the moving wall and along the line separating the steady and unsteady 
flows maps into a time-independent curve K(ul, uz) = 0 in the hodograph 
plane. 

The formulated boundary value problems permit in principle the solu- 
tion of gas mot ions in curved channels, whose walls are stationary up 
to a certain point and from there on move according to a definite rule, 
so that the flow in the region of the physical plane bounded by the 
fixed characteristics through the last fixed point on the channel Walls 
is steady and the flow behind those characteristics is unsteady. 

As an illustration, we use Masseau’s method of characteristics to 
solve for an isothermal gas the problem of the joining of a steady 
simple wave to an unsteady double wave across a stationary character- 
istic. 

1. The System of equations describing double waves under the assump- 
tion of straight-line generatrices is (see [41) 

(1.1) 
‘1% (Y - 1) 8 ((1 -e,~~0,,3-ze,6,e,~~~-ee,~~e,i-t~~,~~-33)~8,2+e~~iz=~ 

(1 - e 12) ~a; + ~e,e,~~* + (i - 0 2) QILe = 0 (1.2) 

2i = fuz -I- ‘/a (r - i)88,1 t + @,” (i = 1, 2) (1.3) 

Here 

[i, k = i, 2) 

We assume isentropic flows: the equation of state is in the form 

Here p is the pressure, S the entropy, y the adiabatic exponent, and 
p the density. We assume straight-line generatrices; this means that 
the velocity vector u is constant along straight lines in the zI, x2, t 
space, given by relation (1.3). After solving the system (1.1) and (1.2) 
for the functions 6 and 610, defined in the hodograph plane, we find the 
flow in the physical plane from relation (1.3). We note that the tYPf?S 

of equation (1.1) for 0 and of equation (1.2) for Q” are the Same, and 
are determined by the sign of the expression 
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R =0,2+e*2--- 1 (1.4) 

In what follows, we shall assume that K > 0, i.e. that equations 
(1.1) and (1.2) are hyperbolic and the characteristics are real for 
both equations. Let us consider the following problem.* 

Is it possible to join an unsteady double-wave flow to a steady plane 
potential flow? In plane steady potential flow, we have the Bernoulli 
integral. We write this as 

“/a cr - 1) 82 + l/,, (u,* + Use) = A2 = const (1.5) 

Let us assume that the unsteady double-wave flow is bounded from a 
two-dimensional steady flow by some line Q(u,, uz) = 0 in the hodograph 
plane. Then along this line, the function 6 defined by equation (1.1) 
must satisfy the following condition. derived from (1.5) and (1.3) 

“/2 tr - I)ee~$~u~=O (i = f, 2) (l-6) 

(the derivatives ei are continuous across the line in question), 

From (1.3) and (1.6), it follows that the boundary between the flows 
considered may only be a stationary curve. defined by 

If the curve ~(a,, u2) 

= const with c: 
= 0 degenerates into the point ul = cl = const, 

u* = c2 + cg2 > 0, then the re is no common line between 
the flows in the physical plane. An exception is the case cl = c2 = 0, 
for which it was shown 161 that to a region of rest may be adjoined an 
unsteady double wave across a stationary weak discontinuity. This case 
mill not be considered in the present work. 

Relation (1.6) may be interpreted as a set of initial Cauchy data 
for equation (1.1) along the line cp(u1, ug) = 0. Since equation (1.1) 
is satisfied by the function 8, determined from Bernoulli’s integral 

(1.5), it is necessary to consider the line Q(u~, u2) = 0 as a 

* We note in passing that I. Burnat has constructed fn [71 examples of 
some constant plane flows adjoined to unsteady flows, but only in 
the class of simple waves. We shall consider the possibility of con- 
structing unsteady flows of a much wider class, as we shall see be- 
low. 



1102 A.F. Sidorou 

characteristic of the equations (X.1) and (1.2) in order to obtain an 
unsteady flow. We write the equations of the characteristic strips (see 
fs. Chap.33) f or (1.1) and (1.2) in the form 

(1 - f3 22) dua2 - Ze,e ZduaduL + (1 - 8 12) dulz = 0 (1.8) 

‘fz (7 - i)e (I -e,2)de1dUZ + p/Z (T-- 3) (eef -be,*) t 21 du,dh, -k 

+ vE (7 - ike (1 - e,z) du,dep = 0 

(1 - e,z) d~d~~~ + (1 - elz) du~d~~O = 0 

de = eldpul $ ezdu,, dW = Qlodul -f- cD,‘du, 

The characteristics in the hodograph plane, defined by the first 

equation in (1.8) with 8 substituted from the Bernoulli integral (1.5). 
coincide with the corresponding characteristics of steady flow and con- 
sequently will be epicycloids (see [91). 

Since the coefficients for the highest derivatives for a0 and 8 along 
the characteristics in question coincide with the corresponding coeffi- 
cients of the equation for the potential in steady flow, and since 
Bernoulli’s integral (1.8) satisfies equation (1.1). the condition for 
the characteristic strips (1.8) is exactly satisfied along the station- 
ary characteristics considered. Thus, the assertion that unsteady double 
waves may adjoin steady potential plane flows is proved. 

An entirely similar situation obtains for an isothermal gas, in which 
case instead of equations (1. I) to (1.3) we have 

(1 - q?) (qa* + 1) + 2q1q!Jq1a + (1 - qa2) (Qll + 1) = 0 

(1 - 92) @*a0 + 2qlq,%” + (1 - q2) Qsl1° = 0 

Xi Z (Ui + qi) t + @$ (i = 1, 2) 

(f-9) 

(1.10) 

(Lil) 

where 

The characteristics for steady flow in the hodograph plane are 
evolutes of the circle; thus in this case the characteristic strips for 
equation (1. lo) may be written in pWaI&riC form as: 

u1 = cm p + (p - po) sin pl 

ua = sin p - (p - po) Cm p, 

q = c - ‘/!A (P - PlJ2 

q1 = - cos p - (p - po) sin p 

qz = - sin p + (p - pO) cos p 
(c = const, p - parameter) 

2, Let us consider some properties of the moving walls, which are 
consistent with the class of flows being studied. By a moving wall in 
this connection we mean some curve in the rl, x2 Plane moving with time 



The mot ion of compressible fluids in plane channels 1103 

and given by ly(x,, x2, t) = 0. across which there is no flow. Along the 
wall curve, the following kinematic boundary condition must hold: the 
normal component of the fluid velocity to the wall must equal the normal 
wall velocity. 

Let n be the normal to the wall curve at the point x1, x2 at the in- 
stant t, and let D be the normal velocity of the wall at the same point. 
The kinematic boundary condition is then 

n.u = D (2.1) 

From (2.1) we obtain an equation for the function y 

ag I ~x,u, + ag I a~,h + aq 1 at = 0 (2.2) 

Substituting into (2.2) the functions ui. found from relation (1.3) 
(after solving equations (1.1) and (1.2)), and solving for (2.2) the 
Cauchy problem v = yr(x,, xz) at t = t,,, we may find for a given flow 
different moving walls of shapes known at the instant t = t,,. 

We note one further property. We shall consider the case when the 
motion of the wall corresponds to a fixed curve in the hodograph plane. 

Theorem. In the class of unsteady plane flows of the double-wave 
type. there exists no stationary curved wall with a time-independent 
velocity distribution K(ul, u2) = 0. 

In fact, assume that such a wall is found and the curve X(ul, u2) = 0 
corresponds to some cylindrical surface in the x1, x2, t space. Then 
from the presence of the straight-line generators belonging to this sur- 
face, along which u1 and u2 are constant, it follows that the normals 
to the wall surface are constant, and consequently the wall is straight. 

Let us find D and n, if the motion of the curve in the x1, x2 plane 
is defined by (1.3) and the shape of this curve in the hodograph plane 
is known and given by the equation 

UP = f (4 (2.3) 

Setting 

Ar = Ui + l/g (r - 1) O0.i (i = 1, 2) (2.4) 

we have from (1.3) 

dXt = A(tdu, + Atdl f @t”du, (i = 1,2) (2.5) 

where the prime indicates differentiation along the curve (2.3). For a 
vector perpendicular to the curve in question at the instant t at the 
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Point ul, u2, we have 

dx1 - 
-..-“- 

ll,‘t i_ fDZCf 
Q’Xa Al't + alo’ 

(2.6) 

Solving the system of equations (2.5) and (2.6), we find 

5 = (A’$+ d&z”) IA, (A.z’t + @a”) - Aa (Al’t + Cg,"')l 
dt (A,'t + @lo’)2 + (A,'t + aa“‘)* 

dx?. _ - fA,‘t + Qlo’) [Al (A,‘t + Qzo’) - A, fA,‘t + tplo’)] -- 
dt ( A,‘t + @1o’)2 + ( Aa’t + QIzc’)2 

(2.7) 

Taking into account the fact that 

(2.8~ 

we may write condition (2.1) in the form 

Al (A\,‘t + f&O’) - Aa (A,‘t + Qlo’) =I. UI (h,‘t + Q;‘) - u, (Al’t -b m,“‘) (2.9) 

and consequently, since t is arbitrary, the following relations must 

hold along the moving wall curve: 

The first condition in (2.10) defines some relation F(ul, u2, 6,, 
0 2’ 6) = c = const along the curve (2.3) for equation (1. l), in which 
the constant c must be found from the matching condition at the point 

where the stationary wall adjoins the moving wall. In exactly the same 

way, after the function 6(u1, u2) is found, condition (2.10) defines 

along (2.3) some relation t( ul, u2, @,O, cD,O) = const for equation (1.2). 

We note that in steady flow, the first equation in (2.10) is auto- 

matically satisfied (since Ai = 0) , while the second equation in (2.10) 

expressed the fact that the normal fluid velocity at a Stationary wall 

must vanish. 

In the formulation of the problem considered, the velocity distribu- 

tion is given along the moving wall curve, while the motion and shape 

of the wall is determined afterwards from equation (1.3). In principle, 

the other approach to the problem is also possible, in which the shape 

of the moving wall is given at some instant t. This leads to a condition 

of the type (2.10) in the physical plane; however, the curve in the 

hodograph plane corresponding to the moving wall (exactly as in the case 

of steady flow) is unknown and this complicates the solution of the prob- 

lem. since equation (1.1) for 8 is given in the hodograph plane. 

The steady flow solution exactly satisfies the first condition (2.10); 
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Consequently, an immediate joining (across a stationary characteristic) 

of a steady flow to an unsteady flow with moving walls of the type con- 

sidered is not possible. For otherwise, from the solution of the mixed 
problem for equations (1.1) and (1.2) with initial data on the charac- 

teristic and on the noncharacteristic curve (2.3), we will only find a 

steady flow. 

Thus, the general form of the flow in the hodo~raph plane may be re- 

presented as shown in Fig. 1, 

The lines AR and RR correspond to stationary characteristics and 

bound the region AN?, in which the flow is steady. The regions AECR and 

RRDF correspond to unsteady flows, but in these regions there are no 

moving walls of the kind discussed, We may find the flows in these 

regions, given, for example, some relations on the functions 0,. 8, and 

@lo, @2o, on the noncharacteristic curves .4C and ED. 

After solving the mixed problem in the regions ,lCR and MU), we solve 

the Cauchy problem in the regions AEC and RDF, 

bounded by the characteristics M, EC and RF, Fll 

respectively, with initial data given on the 

lines IZC and RD. In the region RCOD we solve the D 
Problem with data on the two Characteristics RC 

and RD. 

Finally, in the regions APE and flQF (lines riP 

and NJ corresponding to noving walls) we solve 

mixed problems with data given on the character- 

istics AE and RF and condition (2.10) given on 

the wall curves AP and BQ. UI 

Each of the separate Problems described may Fig. 1. 

be solved for equations (1.1) and (1.2) numeri- 
cally using the method of characteristics of Masseau; in addition, the 

derivatives in (2.10) are replaced by finite difference quotients and 

the problem is readily solved in the usual manner. 

The approach discussed for solving the problem of joining a steady 

flow to an unsteady flow in a channel with moving walls is, evidently. 

not a unique one. In the given approach there are the following possi- 

bilities: we may arbitrarily give the shape of the lines AC and BD in 

the physical plane and in the hodograph plane, a combination of the 

functions 0, e,, 8, along them, and also the velocity distribution along 

the moving wall. This arbitrariness permits, in Particular, the con- 

struction of unsteady flows with given properties (e.g. maximum aCCele- 
ration of the steady flow at the beginning in regions ACR and MI) and 

then determination of the corresponding moving Wall). In Principle, we 
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may give some additional conditions on the wall curves AP and BQ, solve 
the Cauchy problem in the regions APE and BFQ, and find the character- 
istics AE and RF, and then solve the problem with data on two character- 
istics in the regions AECR and BRDF. 

3. AS an illustration of the given method, we carry out a calcula- 
tion for an isothermal gas; for simplicity, we do not consider an un- 
steady double wave adjoining an arbitrary steady flow, but only one ad- 
joining a steady simple wave, the boundary between them being a charac- 
teristic of one family only. Assume a steady uniform supersonic flow to 
occupy the inlet of a straight-walled channel, and then let one of the 
walls become curved, so that the uniform flow becomes a simple wave of 
the following form (Fig. 2): 

u1 = cos s + (S + 1 - l/,2$ sin s, . u2 = sin s - (s + 1 - “I& cm s 

s = x1+ x~iulS+Y,n, q = c - ‘/,Ul” - yg4,= (c = const) (3.1) 

The curved part of the stationary Wall 0.4, starting from the Origin 
(0, 0), is given parametrically thus 

X1=$- “2 tlo s - l/p, x~=COS=S~GOSS cm 

exp[$+(i--$)sf (2 i sinexp[-$--(i-%)sfds-qexp[g---1) 

% = 

Up to the characteristic 03 

x1 -+ xa = 0 (3.31 

One channel wall is straight, 

a1 = 2. The simple wave occurs in the region OAR. The shape of the J 
and the flow is uniform with uz =. 6 and 

steady characteristic A3 is found after integrating the linear eQuatiOn 

with initial condition at the point A, s E fl.26; l/4 ~1. In the 
region BAC the method of 
characteristics of Masseau is 
used to solve equations (1.10) 
and (1.11) for the unsteady 
double wave, in which along 
the noncharacteristic curve 

BC (xz = - 0.1593) are given 
the conditions 

(I1 = const = - t’g 
(3.5) 

(Dzo = con&. = - 0.1593, r+=o 
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The solution and the characteristics in the i~odograpli plane are 
shown in Fig. 3. 

The characteristic A’R* corresponds to the simple wave region OAR in 

Fig. 3. 

the physical plane, and the 
curve A ‘D’ to the moving wall 
AD. In the region C’A’D’ the 
solution is completely undeter- 
mined, and the position of the 
moving wall is considered only 
in the neighborhood of the 
point A. The shape of the 
moving wall is shown in Fig. 2. 
The normal velocity of the 
moving wall at the point 0 is 
D = 0.103, the point o corre- 

spending the the point o’ in the hodograph plane. 

The region BAC in the physical plane corresponds to the region 
B’A’C’ in the hodograph plane at the instant t = 0, and the region RAC” 

to B’A’C’ at t = 0.5. In the given case of an isothermal gas, the 
Jacobian of the coordinate transformation from the hodograph plane to 
the physical plane is 

At I = 0. it is immediately verified that 

@,P@aaO - QD,” # 0 (3.7) 

i.e. mapping to the physical plane is possible, and no limiting line 
will appear for some time interval to > t > 0. We remark here that the 
formulation of the problem does not permit prong double waves) the 
complete solution for unsteady flows joined to steady flows in moving- 
wall channels arising from a wall starting to move from some point on 
at some instant. This difficulty is connected with the appearance of 
limiting lines, if we consider the time t < 0. We shall not carry out 
here the investigation for the time of existence of the flows discussed. 

In conclusion, the author thanks N.N. Ianenko for his attention and 
advice. 
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